Election of the Pope, Saint Peter's Squere

XALEF

NALEF

FabricPath Use Cases

Jiří Cihlář CCIE#24609 jiri.cihlar@alefnula.com

Agenda

- Introduction to FabricPath
- Use Case 1 FabricPath in DC
- Use Case 2 FabricPath for DCI
- Testing results
- Use Case 3

FabricPath

TRILL (Transparent Interconnection of Lots Links)

IETF standard for Layer 2 multipathing

Drawbacks of STP

- Local STP problems have networkwide impact – low scalability
- Troubleshooting is difficult
- Slower convergence
- STP provides limited bandwidth

Benefits of Routing

- Fast Convergence
- Highly Scalable
- Multi pathing (ECMP)

Layer 3 routing benefits to Layer 2 bridged Ethernet networks

- Driven by multiple vendors, including Cisco
- TRILL now officially moved from Draft to Proposed Standard in IETF
- Proposed Standard status means vendors can confidently begin developing TRILL-compliant software implementations
- Cisco FabricPath is pre-standard implementation of TRILL, available from 2010 on Cisco Nexus switches

FabricPath vs. TRILL

	Fabricpath	TRILL
Frame routing (ECMP, TTL, RPFC etc)	YES	YES
VPC+	YES	NO
FHRP active/active	YES	NO
Multiple Topologies	YES	NO
Conversational learning	YES	NO
Inter-switch links	Point-to-point only	Point-to-point OR shared
STP interaction	Fabric is root to CE region, no BPDUs forwarded accross Fabric	CE region part of TRILL fabric, snoop BPDUs for prevent loops
Encapsulation	end to end	end to end + hop by hop

- FabricPath will provide a TRILL mode with a software upgrade (hardware is already TRILL capable)
- Cisco will push FabricPath specific enhancements to TRILL

Data Center Design

L2 limited only to POD

Requirement to extend L2 to other PODs because of VM mobility, clusters/heart-beat

Data Center Design

L2 over all PODs with STP just extended to the whole network

Data Center Design

L2 over all PODs with vPC/VSS technology and STP as a last resort

Use case 1 – FabricPath inside Data Center

Send/receive FabricPath frame
No STP, no MAC address learning
Using routing table computed by IS-IS

Send/receive regular Ethernet frames Run STP, do MAC address learning using MAC address table

L2 over all PODs with FabricPath

Use case 1 – FabricPath inside Data Center

Adding Spine switch easily increases the bandwith between PODs

Use case 1 – FabricPath inside Data Center

Using FEXes we can extend FabricPath to the whole DC

Data Center Interconnect

Requirements for DCI

- LAN extension between DC
- Why do the customers request LAN extension?
 - Addressing constraints
 - Allows easy server provisioning
 - Some Applications/Protocols rely on L2
 - High-availability clusters
 - Allows virtual machines mobility
- Low latency
- Redundancy with fast end-to-end convergence
- Loopfree network
- Multi Path load balancing
- Avoid End-to-End STP, STP isolation between DCs

Requirements for DCI

What is used for loop prevention?

Spanning Tree Protocol

Typical limitations of L2 network based on STP:

- Local STP problems have network-wide impact, troubleshooting is difficult
- Flooding impacts the whole network
- STP provides limited bandwidth (no load balancing)
- MAC address tables don't scale

We can add other requirements:

- avoid STP as much as possible, STP isolation between DCs
- avoid unicast flooding

How to choose the right DCI design?

Who owns the core infrastructure?

- Enterprise
- ISP

Which type of service is possible over core infrastructure?

- Dark fiber or Layer 1 services DWDM, CWDM
- Layer 2 services offered by ISP EoMPLS, VPLS
- Layer 3 services offered by ISP IP, L3 MPLS VPN

How many datacenters?

- Two DCs
- More than two DCs

How many VLANs, MAC addresses should be exended?

What is the distance between DC?

Interconnection of two DCs

Two datacenters

More than two DCs

	Core	Technology used by enterprise	Mechanism for loops prevention
Native Layer 2	dark fiber or L1 services	MEC over DWDM based on VSS, VPC	no loops, STP as a last resort or BPDU filtering
L2 over L3	dark fiber or L3 services	OTV	OTV, STP isolation between DCs
L2 over L3	L2 services	EoMPLS	STP end-to-end, VSS
L2 over L3	L3 services	EoMPLSoGRE, L2TPv3	STP end-to-end, EEM scripts solution, VSS

	Core	Technology used by enterprise	Mechanism for loops prevention
Native Layer 2	dark fiber or L1 services	MEC over DWDM based on VSS, VPC	no loops, STP as a last resort or BPDU filtering
L2 over L3	dark fiber or L3 services	ОТУ	OTV, STP isolation between DCs
L2 over L3	L2 services	VPLS	STP end-to-end, EEM scripts, PE clustering = VSS with A-VPLS
L2 over L3	L3 services	VPLSoGRE	STP end-to-end, EEM scripts, PE clustering = VSS with A-VPLS

Use case 2 - Interconnection of two DCs

	Core	Technology used by enterprise	Mechanism for loops prevention
Native Layer 2	dark fiber or L1 services	FabricPath	FabricPath, no STP

Pros:

- No loop in topology
- Multi Path load balancing
- No STP, FabricPath in DCs
- Fast convergence (IS-IS)

Cons:

- Dark fiber/L1 needed
- Cisco proprietary

Testing of Fabricpath in DCs

Requirements

- L2/L3 design verification of new geographically dispersed datacenter across two sites (distance around 20 km)
- Sites interconneted by dark fibers (DWDM)
- LAN extension between sites
- STP prevention between sites
- IPv4 and IPv6

Use case 1 + Use case 2
Design based on Cisco Nexus 7000, 5000, 2000 and Fabricpath

L1 Topology

L2 Topology

XALEF

L3 Topology

XALEF

Streams

Failures

Convergence tests

Failure number/Failure	Failure	Restore
1	90 ms G1 – T1	292 ms G1 – T1
2	418 ms G1 – T1	0
3	58 ms T5 – T7	0
4	340 ms T1 – T4, T6 – G2	0
5	216 ms T1 – T4	0
6	236 ms G3 – T1, T6 – G2	0
7	171 ms T5 – T7	42 ms T4 – T6
8	4 ms T1 – T4	0
9	597 ms G1 – T1	0
10	222 ms G1 – T1	0
11	3 ms T1 – T4	0
12	140 ms T1 – T4, G1 – T1	0
Chassis Pwr-Off	2s N7k, 680 N5k, 0 N2k	4s* N7K, 173 N5K, 417 N2K
Fabric release N7K	0	0
Sup release N7K, VDC FP	1,3s G2-T6	0

^{*} Only for IPv4 traffic, for IPv6 traffic required max-metric router-lsa for ospfv3 in NX-OS 6.2, BFD for OSPFv3 and FP

Use case 3

Use case 3 - Internet eXchange

Current NIX topology

Have you seen this before?

2.4.2013

NIX design with FabricPath

Increasing the bandwith and redundancy

FabricPath can be suitable technology for Internet eXchange

Thank you for your attention

www.alef.com