

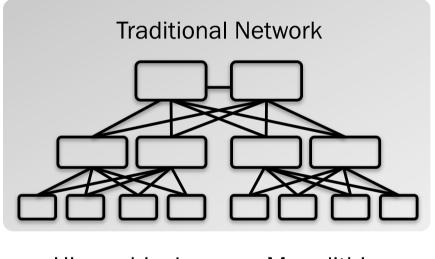
BROCADE

SOFTWARE DEFINED NETWORKING FOR SERVICE PROVIDERS – USE CASES

Steve Worrall

May 23rd 2013

What if you could ...



Build your next data center optimized for highest demands in flexibility, reliability, and scale Virtualize your network **starting now** for greater responsiveness and increased asset utilization

Create and deliver customized services and new offerings at the speed of customer need Unlock the intelligence from your network for real-time orchestration and analytics

Why can't you do these things today?

Hierarchical Monolithic Closed North/Southoptimized Inflexible

- Network changes are difficult, slow, and risky
- Can't handle rapid swings in traffic demands
- New services requires too new specialized skills

 $\mathbf{\Sigma}$

What is Software-Defined Networking (SDN)?

- Software abstraction layer on top of networking infrastructure
- Allows external "controller" to control how packets are forwarded by routers and switches
- Key customer benefits:
 - Decouple network application innovation from dependency on new router OS releases
 - Accelerate automation of network changes to increase service velocity

Brocade Cloud-Optimized Networking

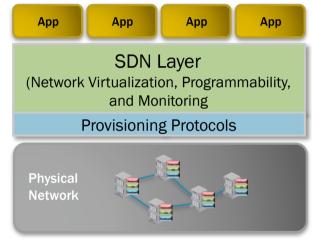
Architecture for building the software-defined network


Cloud-Optimized Network Stack	Enabling Technologiesn	Key Benefits
Cloud Management Layer	Cloud APIs: OpenStack, VMware, Microsoft, CloudStack, etc.	Automation and orchestration
Services Layer	Programmatic Control: OpenFlow; OpenScript	Personalization and monetization
Network Virtualization Layer	Overlay Networking: VXLAN, NVGRE, STT; MPLS	Flexibility and efficient asset utilization
Network Fabric Layer	Any-to-any connectivity: Ethernet Fabrics; TRILL; IP routing	Reliability and simplicity

5

Who is behind Software Defined Networking? Open Networking Foundation (ONF)

- ONF launched publicly in March, 2011
- Support from more than 70 major companies
- The ONF defines OpenFlow and API specifications
- Founding members of ONF:



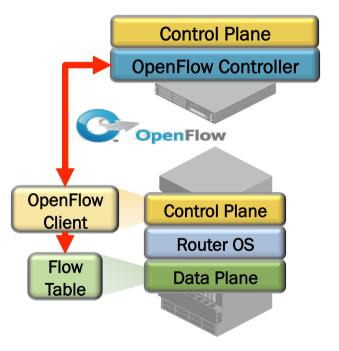
Software Defined Networking and IETF

Similar Goals, Similar Architecture

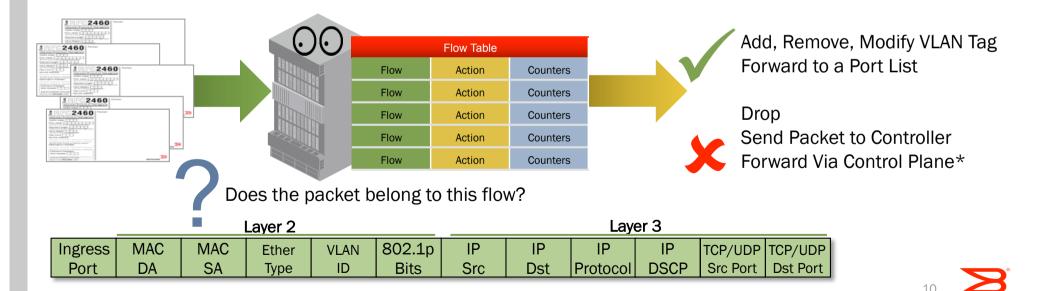
- "SDN Problem Statement and Use Cases for Data Center Applications"
 - draft-pan-sdn-dc-problem-statement-and-usecases-02.txt
- Flexible in terms of provisioning protocols
 - OpenFlow, NetConf, PCE

SDN-enabled Network

OpenFlow Basics



© 2012 Brocade Communications Systems, Inc. PROPRIETARY AND CONFIDENTIAL— Discussed under NDA Only

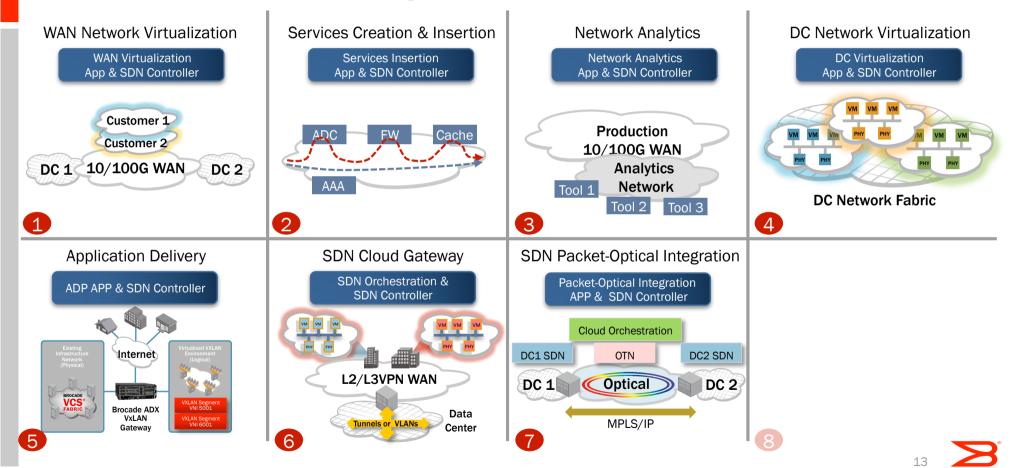

OpenFlow Overview

- Protocol that enables communication between an OpenFlow controller and an OpenFlow router
 - Control plane routing decisions are made by the controller, which typically runs on a server
 - Data plane forwarding is still done by the router
- Router and controller communicate via the OpenFlow protocol, which defines messages
- Router maintains flow tables, which are maintained by the controller using APIs

OpenFlow Router Operation

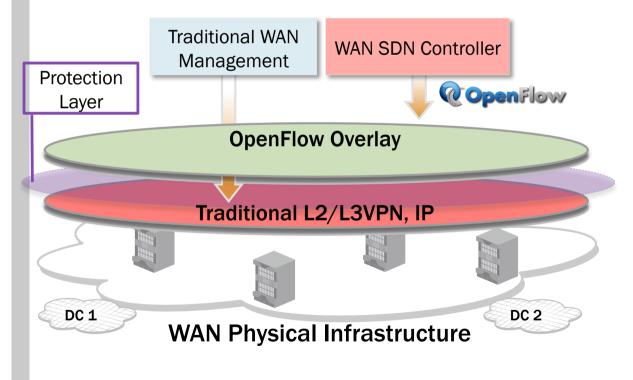
- Flow table contains entries that define a flow based on the packet header
- Flows are sorted by priority as defined by the controller, highest priority flows match first

OpenFlow Applications: What can you do with OpenFlow?


- OpenFlow itself does not define or mandate any specific application, it's just an interface into the control plane
- Enables a large set of applications due to its flexibility to program the network based on any external criteria
 - Cost
 - Time of day
 - Latency
 - Security
 - Traffic policy
 - Load
- Ideal for automation in highly orchestrated environments where you want to precisely control network behavior

OpenFlow Use Cases

OpenFlow Will Evolve Through Value-Added Applications

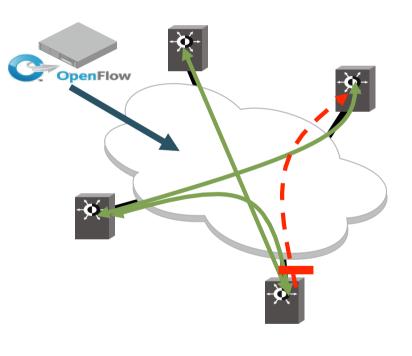

Brocade SDN Target Use Cases

WAN Network Virtualization

Traditional L2/L3VPN-IP Network with OpenFlow Overlay

- OpenFlow as an overlay to existing network
 - Allows for new revenue-generating features on top of existing production network
- Enabled by Brocade's "Hybrid port mode"
 - OpenFlow and traditional features enabled concurrently on same router ports
- Protected Hybrid Port Mode
 - OpenFlow does not affect Traditional traffic
 - Protection in hardware
 - Allows for initial OpenFlow overlay service development without risk

Use Case 1


BROCADE OPENFLOW ENABLED 100G NATIONWIDE BACKBONE

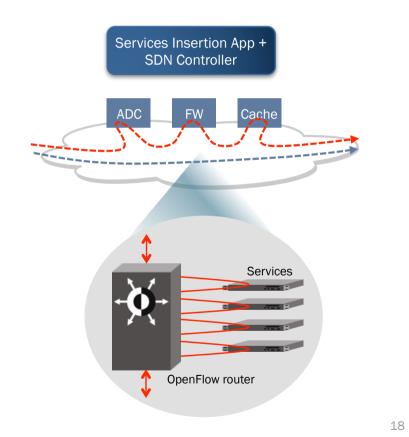
Policy-Based IXP with SDN

- IXP peering flows could be programmed entirely with OpenFlow
 - MAC addresses already have to be registered
- Offers much greater port security and traffic control
 - Solves problem of receiving unwanted traffic/ default routing
 - Intercept all ARP/ND and punt to server for validation
- Could offer member-provisioned public peering
 or VLAN PNIs through portal

OpenFlow

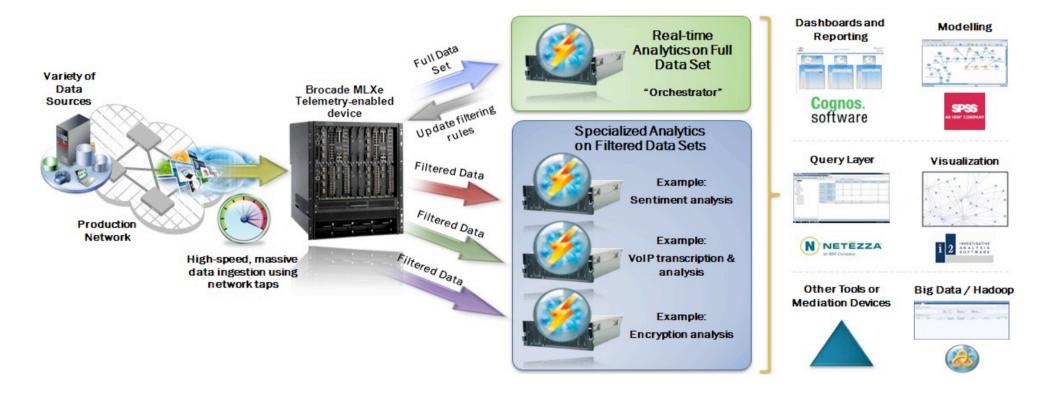
Monitoring All Paths in the IXP Network

- Need to monitor all links in a network, not just the best path
- Complicated by multipath and LAG
 - Test packets take the best path
 - Google does this with RSVP-TE LSPs which creates a lot of state(*)
 - LINX does this with SNMP/UDP
 - Use existing network topology for production peering traffic
- Overlay to match crafted test flows on specific ports to cover all links in the network


© 2012 Brocade Communications Systems, Inc. (*) https://ripe65.ripe.net/presentations/828-RIPE65.Talk29.Google_Blackbox_Monitoring.pdf

 \geq

Services Creation & Insertion


- SDN automates
 - Traffic steering to achieve desired pipeline of services
 - Customization of services according to customer needs
- Optimizes use of network resources
 - No need to steer traffic through traffic steering appliances

B

Use Case 3

Network Analytics Architecture

SDN Approach to Network Analytics

Unlocking Advanced Operational Intelligence

- Why network analytics is important
 - Real-time network statistics collection & alerting
 - Summarization of normal and abnormal traffic
 - Detect network performance issues in advance of customer complaints
- Use cases

...

- Internet/Mobile traffic analysis: Facebook, Youtube, Email, ...
- Big Data analysis
- Detection of unlawful content

<complex-block>

Conclusion

SDN is a vehicle for reducing service delivery costs and increasing service velocity with key benefits

	SDN Percentage Savings Compared to PMO			
TCO Category	Service Creation & Insertion	WAN Virtualization	Network Analytics	
Network CapEx	39%	49%	13%	
Network OpEx	31%	38%	17%	
Labour Cost for Order Processing Setup	77%	77%	77%	
Labour Cost for Order Processing	86%	86%	86%	
тсо	83%	61%	48%	

Operational Savings

Flexibility

- Improved Uptime
- Better Management

Planning

Service velocity is increased by reducing order processing setup time from one year to four months and by a 7:1 reduction in order processing time.

Infrastructure Savings

R

BROCADE

Thank You